package runtime import ( "crypto/sha256" "math" "math/big" "gitlab.33.cn/chain33/plugin/dapp/evm/executor/vm/common" "gitlab.33.cn/chain33/plugin/dapp/evm/executor/vm/common/crypto" "gitlab.33.cn/chain33/plugin/dapp/evm/executor/vm/params" "gitlab.33.cn/chain33/plugin/dapp/evm/executor/vm/model" "golang.org/x/crypto/ripemd160" ) // 系统内置合约实现的接口,只包含两个操作: // 1 根据合约自身逻辑和入参,计算所需Gas; // 2 执行合约。 type PrecompiledContract interface { // 计算当前合约执行需要消耗的Gas RequiredGas(input []byte) uint64 // 执行预编译的合约固定逻辑,input为入参 Run(input []byte) ([]byte, error) } // chain33平台支持君士坦丁堡版本支持的所有预编译合约指令,并从此版本开始同步支持EVM黄皮书中的新增指令; // 保存拜占庭版本支持的所有预编译合约(包括之前版本的合约); // 后面如果有硬分叉,需要在此处考虑分叉逻辑,根据区块高度分别处理; // 下面的8个预编译指令,直接引用go-ethereum中的EVM实现 var PrecompiledContractsByzantium = map[common.Address]PrecompiledContract{ common.BytesToAddress([]byte{1}): &ecrecover{}, common.BytesToAddress([]byte{2}): &sha256hash{}, common.BytesToAddress([]byte{3}): &ripemd160hash{}, common.BytesToAddress([]byte{4}): &dataCopy{}, common.BytesToAddress([]byte{5}): &bigModExp{}, common.BytesToAddress([]byte{6}): &bn256Add{}, common.BytesToAddress([]byte{7}): &bn256ScalarMul{}, // FIXME 这里还需要依赖EVM包装过的bn256包(common.crypto.bn256),没法使用原生bn256,后继需要优化为使用原生bn256 // 难度比较大,优先级放低 common.BytesToAddress([]byte{8}): &bn256Pairing{}, } // 调用预编译的合约逻辑并返回结果 func RunPrecompiledContract(p PrecompiledContract, input []byte, contract *Contract) (ret []byte, err error) { gas := p.RequiredGas(input) if contract.UseGas(gas) { return p.Run(input) } return nil, model.ErrOutOfGas } // 预编译合约 ECRECOVER 椭圆曲线算法支持 type ecrecover struct{} func (c *ecrecover) RequiredGas(input []byte) uint64 { return params.EcrecoverGas } func (c *ecrecover) Run(input []byte) ([]byte, error) { const ecRecoverInputLength = 128 input = common.RightPadBytes(input, ecRecoverInputLength) // "input" is (hash, v, r, s), each 32 bytes // but for ecrecover we want (r, s, v) r := new(big.Int).SetBytes(input[64:96]) s := new(big.Int).SetBytes(input[96:128]) v := input[63] - 27 // tighter sig s values input homestead only apply to tx sigs if !common.AllZero(input[32:63]) || !crypto.ValidateSignatureValues(r, s) { return nil, nil } // v needs to be at the end for libsecp256k1 pubKey, err := crypto.Ecrecover(input[:32], append(input[64:128], v)) // make sure the public key is a Valid one if err != nil { return nil, nil } // the first byte of pubkey is bitcoin heritage return common.LeftPadBytes(crypto.Keccak256(pubKey[1:])[12:], 32), nil } // SHA256 implemented as a native contract. type sha256hash struct{} // RequiredGas Returns the gas required to Execute the pre-compiled contract. // // This method does not require any overflow checking as the input size gas costs // required for anything significant is so high it's impossible to pay for. func (c *sha256hash) RequiredGas(input []byte) uint64 { return uint64(len(input)+31)/32*params.Sha256PerWordGas + params.Sha256BaseGas } func (c *sha256hash) Run(input []byte) ([]byte, error) { h := sha256.Sum256(input) return h[:], nil } // RIPMED160 implemented as a native contract. type ripemd160hash struct{} // RequiredGas Returns the gas required to Execute the pre-compiled contract. // // This method does not require any overflow checking as the input size gas costs // required for anything significant is so high it's impossible to pay for. func (c *ripemd160hash) RequiredGas(input []byte) uint64 { return uint64(len(input)+31)/32*params.Ripemd160PerWordGas + params.Ripemd160BaseGas } func (c *ripemd160hash) Run(input []byte) ([]byte, error) { ripemd := ripemd160.New() ripemd.Write(input) return common.LeftPadBytes(ripemd.Sum(nil), 32), nil } // data copy implemented as a native contract. type dataCopy struct{} // RequiredGas Returns the gas required to Execute the pre-compiled contract. // // This method does not require any overflow checking as the input size gas costs // required for anything significant is so high it's impossible to pay for. func (c *dataCopy) RequiredGas(input []byte) uint64 { return uint64(len(input)+31)/32*params.IdentityPerWordGas + params.IdentityBaseGas } func (c *dataCopy) Run(in []byte) ([]byte, error) { return in, nil } // bigModExp implements a native big integer exponential modular Operation. type bigModExp struct{} var ( big1 = big.NewInt(1) big4 = big.NewInt(4) big8 = big.NewInt(8) big16 = big.NewInt(16) big32 = big.NewInt(32) big64 = big.NewInt(64) big96 = big.NewInt(96) big480 = big.NewInt(480) big1024 = big.NewInt(1024) big3072 = big.NewInt(3072) big199680 = big.NewInt(199680) ) // RequiredGas Returns the gas required to Execute the pre-compiled contract. func (c *bigModExp) RequiredGas(input []byte) uint64 { var ( baseLen = new(big.Int).SetBytes(common.GetData(input, 0, 32)) expLen = new(big.Int).SetBytes(common.GetData(input, 32, 32)) modLen = new(big.Int).SetBytes(common.GetData(input, 64, 32)) ) if len(input) > 96 { input = input[96:] } else { input = input[:0] } // Retrieve the head 32 bytes of exp for the adjusted exponent length var expHead *big.Int if big.NewInt(int64(len(input))).Cmp(baseLen) <= 0 { expHead = new(big.Int) } else { if expLen.Cmp(big32) > 0 { expHead = new(big.Int).SetBytes(common.GetData(input, baseLen.Uint64(), 32)) } else { expHead = new(big.Int).SetBytes(common.GetData(input, baseLen.Uint64(), expLen.Uint64())) } } // Calculate the adjusted exponent length var msb int if bitlen := expHead.BitLen(); bitlen > 0 { msb = bitlen - 1 } adjExpLen := new(big.Int) if expLen.Cmp(big32) > 0 { adjExpLen.Sub(expLen, big32) adjExpLen.Mul(big8, adjExpLen) } adjExpLen.Add(adjExpLen, big.NewInt(int64(msb))) // Calculate the gas cost of the Operation gas := new(big.Int).Set(common.BigMax(modLen, baseLen)) switch { case gas.Cmp(big64) <= 0: gas.Mul(gas, gas) case gas.Cmp(big1024) <= 0: gas = new(big.Int).Add( new(big.Int).Div(new(big.Int).Mul(gas, gas), big4), new(big.Int).Sub(new(big.Int).Mul(big96, gas), big3072), ) default: gas = new(big.Int).Add( new(big.Int).Div(new(big.Int).Mul(gas, gas), big16), new(big.Int).Sub(new(big.Int).Mul(big480, gas), big199680), ) } gas.Mul(gas, common.BigMax(adjExpLen, big1)) gas.Div(gas, new(big.Int).SetUint64(params.ModExpQuadCoeffDiv)) if gas.BitLen() > 64 { return math.MaxUint64 } return gas.Uint64() } func (c *bigModExp) Run(input []byte) ([]byte, error) { var ( baseLen = new(big.Int).SetBytes(common.GetData(input, 0, 32)).Uint64() expLen = new(big.Int).SetBytes(common.GetData(input, 32, 32)).Uint64() modLen = new(big.Int).SetBytes(common.GetData(input, 64, 32)).Uint64() ) if len(input) > 96 { input = input[96:] } else { input = input[:0] } // Handle a special case when both the base and mod length is zero if baseLen == 0 && modLen == 0 { return []byte{}, nil } // Retrieve the operands and Execute the exponentiation var ( base = new(big.Int).SetBytes(common.GetData(input, 0, baseLen)) exp = new(big.Int).SetBytes(common.GetData(input, baseLen, expLen)) mod = new(big.Int).SetBytes(common.GetData(input, baseLen+expLen, modLen)) ) if mod.BitLen() == 0 { // Modulo 0 is undefined, return zero return common.LeftPadBytes([]byte{}, int(modLen)), nil } return common.LeftPadBytes(base.Exp(base, exp, mod).Bytes(), int(modLen)), nil }