// Copyright Fuzamei Corp. 2018 All Rights Reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Copyright 2010 The Go Authors. All rights reserved. // Copyright 2011 ThePiachu. All rights reserved. // Copyright 2013 Michael Hendricks. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package btcutil // See http://www.hyperelliptic.org/EFD/g1p/auto-shortw.html // and http://stackoverflow.com/a/8392111/174463 // for details on how this Koblitz curve math works. import "crypto/elliptic" import "fmt" import "math/big" // KoblitzCurve A Koblitz Curve with a=0. type KoblitzCurve struct { P *big.Int // the order of the underlying field N *big.Int // the order of the base point B *big.Int // the constant of the KoblitzCurve equation Gx, Gy *big.Int // (x,y) of the base point BitSize int // the size of the underlying field } // Returns the secp256k1 curve. var secp256k1 *KoblitzCurve // Secp256k1 create curve object func Secp256k1() elliptic.Curve { return secp256k1 } func init() { var p, n, gx, gy big.Int fmt.Sscan("0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F", &p) fmt.Sscan("0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141", &n) fmt.Sscan("0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798", &gx) fmt.Sscan("0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8", &gy) b := big.NewInt(7) secp256k1 = &KoblitzCurve{ P: &p, N: &n, B: b, Gx: &gx, Gy: &gy, BitSize: 256, } } // IsOnCurve check is on curve func (curve *KoblitzCurve) IsOnCurve(x, y *big.Int) bool { // y² = x³ + b y2 := new(big.Int).Mul(y, y) y2.Mod(y2, curve.P) x3 := new(big.Int).Mul(x, x) x3.Mul(x3, x) x3.Add(x3, curve.B) x3.Mod(x3, curve.P) return x3.Cmp(y2) == 0 } // affineFromJacobian reverses the Jacobian transform. func (curve *KoblitzCurve) affineFromJacobian(x, y, z *big.Int) (xOut, yOut *big.Int) { zinv := new(big.Int).ModInverse(z, curve.P) zinvsq := new(big.Int).Mul(zinv, zinv) xOut = new(big.Int).Mul(x, zinvsq) xOut.Mod(xOut, curve.P) zinvsq.Mul(zinvsq, zinv) yOut = new(big.Int).Mul(y, zinvsq) yOut.Mod(yOut, curve.P) return } // Add add func (curve *KoblitzCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) { z := new(big.Int).SetInt64(1) return curve.affineFromJacobian(curve.addJacobian(x1, y1, z, x2, y2, z)) } // addJacobian takes two points in Jacobian coordinates, (x1, y1, z1) and // (x2, y2, z2) and returns their sum, also in Jacobian form. func (curve *KoblitzCurve) addJacobian(x1, y1, z1, x2, y2, z2 *big.Int) (*big.Int, *big.Int, *big.Int) { // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl z1z1 := new(big.Int).Mul(z1, z1) z1z1.Mod(z1z1, curve.P) z2z2 := new(big.Int).Mul(z2, z2) z2z2.Mod(z2z2, curve.P) u1 := new(big.Int).Mul(x1, z2z2) u1.Mod(u1, curve.P) u2 := new(big.Int).Mul(x2, z1z1) u2.Mod(u2, curve.P) h := new(big.Int).Sub(u2, u1) if h.Sign() == -1 { h.Add(h, curve.P) } i := new(big.Int).Lsh(h, 1) i.Mul(i, i) j := new(big.Int).Mul(h, i) s1 := new(big.Int).Mul(y1, z2) s1.Mul(s1, z2z2) s1.Mod(s1, curve.P) s2 := new(big.Int).Mul(y2, z1) s2.Mul(s2, z1z1) s2.Mod(s2, curve.P) r := new(big.Int).Sub(s2, s1) if r.Sign() == -1 { r.Add(r, curve.P) } r.Lsh(r, 1) v := new(big.Int).Mul(u1, i) x3 := new(big.Int).Set(r) x3.Mul(x3, x3) x3.Sub(x3, j) x3.Sub(x3, v) x3.Sub(x3, v) x3.Mod(x3, curve.P) y3 := new(big.Int).Set(r) v.Sub(v, x3) y3.Mul(y3, v) s1.Mul(s1, j) s1.Lsh(s1, 1) y3.Sub(y3, s1) y3.Mod(y3, curve.P) z3 := new(big.Int).Add(z1, z2) z3.Mul(z3, z3) z3.Sub(z3, z1z1) if z3.Sign() == -1 { z3.Add(z3, curve.P) } z3.Sub(z3, z2z2) if z3.Sign() == -1 { z3.Add(z3, curve.P) } z3.Mul(z3, h) z3.Mod(z3, curve.P) return x3, y3, z3 } // Double double func (curve *KoblitzCurve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) { z1 := new(big.Int).SetInt64(1) return curve.affineFromJacobian(curve.doubleJacobian(x1, y1, z1)) } // doubleJacobian takes a point in Jacobian coordinates, (x, y, z), and // returns its double, also in Jacobian form. func (curve *KoblitzCurve) doubleJacobian(x, y, z *big.Int) (*big.Int, *big.Int, *big.Int) { // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l a := new(big.Int).Mul(x, x) //X1² b := new(big.Int).Mul(y, y) //Y1² c := new(big.Int).Mul(b, b) //B² d := new(big.Int).Add(x, b) //X1+B d.Mul(d, d) //(X1+B)² d.Sub(d, a) //(X1+B)²-A d.Sub(d, c) //(X1+B)²-A-C d.Mul(d, big.NewInt(2)) //2*((X1+B)²-A-C) e := new(big.Int).Mul(big.NewInt(3), a) //3*A f := new(big.Int).Mul(e, e) //E² x3 := new(big.Int).Mul(big.NewInt(2), d) //2*D x3.Sub(f, x3) //F-2*D x3.Mod(x3, curve.P) y3 := new(big.Int).Sub(d, x3) //D-X3 y3.Mul(e, y3) //E*(D-X3) y3.Sub(y3, new(big.Int).Mul(big.NewInt(8), c)) //E*(D-X3)-8*C y3.Mod(y3, curve.P) z3 := new(big.Int).Mul(y, z) //Y1*Z1 z3.Mul(big.NewInt(2), z3) //3*Y1*Z1 z3.Mod(z3, curve.P) return x3, y3, z3 } // ScalarMult scalar multiple func (curve *KoblitzCurve) ScalarMult(Bx, By *big.Int, k []byte) (*big.Int, *big.Int) { // We have a slight problem in that the identity of the group (the // point at infinity) cannot be represented in (x, y) form on a finite // machine. Thus the standard add/double algorithm has to be tweaked // slightly: our initial state is not the identity, but x, and we // ignore the first true bit in |k|. If we don't find any true bits in // |k|, then we return nil, nil, because we cannot return the identity // element. Bz := new(big.Int).SetInt64(1) x := Bx y := By z := Bz seenFirstTrue := false for _, byte := range k { for bitNum := 0; bitNum < 8; bitNum++ { if seenFirstTrue { x, y, z = curve.doubleJacobian(x, y, z) } if byte&0x80 == 0x80 { if !seenFirstTrue { seenFirstTrue = true } else { x, y, z = curve.addJacobian(Bx, By, Bz, x, y, z) } } byte <<= 1 } } if !seenFirstTrue { return nil, nil } return curve.affineFromJacobian(x, y, z) } // ScalarBaseMult multiple func (curve *KoblitzCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) { return curve.ScalarMult(curve.Gx, curve.Gy, k) } // Params 获取参数列表 func (curve *KoblitzCurve) Params() *elliptic.CurveParams { return &elliptic.CurveParams{ P: curve.P, N: curve.N, B: curve.B, Gx: curve.Gx, Gy: curve.Gy, BitSize: curve.BitSize, } }