2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

Kyle Quest | golang

50 Shades of Go: Traps, Gotchas, and
Common Mistakes for New Golang
Devs

Go is a simple and fun language, but, like any other language, it has a few
gotchas... Many of those gotchas are not entirely Go's fault. Some of these
mistakes are natural traps if you are coming from another language. Others
are due to faulty assumptions and missing details.

A lot of these gotchas may seem obvious if you took the time to learn the
language reading the official spec, wiki, mailing list discussions, many great
posts and presentations by Rob Pike, and the source code. Not everybody
starts the same way though and that's OK. If you are new to Go the

information here will save you hours debugging your code.
This post covers Go 1.5 and below.

Total Beginner:

Opening Brace Can't Be Placed on a Separate Line
Unused Variables

Unused Imports

Short Variable Declarations Can Be Used Only Inside Functions

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 1/99

http://devs.cloudimmunity.com/author/kyle/index.html
http://devs.cloudimmunity.com/tag/golang/index.html
http://devs.cloudimmunity.com/
http://devs.cloudimmunity.com/

2018/3/6

50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

Can't Use "nil" to Initialize a Variable Without an Explicit Type
Using "nil" Slices and Maps

Map Capacity

Strings Can't Be "nil"

Array Function Arguments

Unexpected Values in Slice and Array "range” Clauses
Slices and Arrays Are One-Dimensional

Accessing Non-Existing Map Keys

Strings Are Immutable

Conversions Between Strings and Byte Slices

Strings and Index Operator

Strings Are Not Always UTF8 Text

String Length

Missing Comma In Multi-Line Slice/Array/Map Literals
log.Fatal and log.Panic Do More Than Log

Built-in Data Structure Operations Are Not Synchronized
Iteration Values For Strings in "range” Clauses

Iterating Through a Map Using a "for range" Clause
Fallthrough Behavior in "switch" Statements

Increments and Decrements

Bitwise NOT Operator

Operator Precedence Differences

Unexported Structure Fields Are Not Encoded

App Exits With Active Goroutines

Sending to an Unbuffered Channel Returns As Soon As the Target
Receiver Is Ready

Sending to an Closed Channel Causes a Panic

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 2/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

Intermediate Beginner:

e Closing HTTP Response Body

e Closing HTTP Connections

e Unmarshalling JSON Numbers into Interface Values

e Comparing Structs, Arrays, Slices, and Maps

e Recovering From a Panic

e Updating and Referencing Item Values in Slice, Array, and Map "for
range" Clauses

e "Hidden" Data in Slices

e Slice Data Corruption

e "Stale" Slices

e Type Declarations and Methods

e Breaking Out of "for switch" and "for select” Code Blocks

¢ |teration Variables and Closures in "for" Statements

e Deferred Function Call Argument Evaluation

e Deferred Function Call Execution

e Failed Type Assertions

e Blocked Goroutines and Resource Leaks

Advanced Beginner:

e Using Pointer Receiver Methods On Value Instances
e Updating Map Value Fields

e "nil" Interfaces and "nil" Interfaces Values

e Stack and Heap Variables

e GOMAXPROCS, Concurrency, and Parallelism

e Read and Write Operation Reordering

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 3/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

e level: beginner

In most other languages that use braces you get to choose where you place
them. Go is different. You can thank automatic semicolon injection (without
lookahead) for this behavior. Yes, Go does have semicolons :-)

Fails:

package main
import "fmt"
func main()

{ //error, can't have the opening brace on a separate line
fmt.Println("hello there!")

Compile Error:

/tmp/sandbox826898458/main.go:6: syntax error: unexpected semicolon or

newline before {

Works:

package main
import "fmt"

func main() {

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 4/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

Unused Variables

e level: beginner

If you have an unused variable your code will fail to compile. There's an
exception though. You must use variables you declare inside functions, but
it's OK if you have unused global variables. It's also OK to have unused

function arguments.

If you assign a new value to the unused variable your code will still fail to
compile. You need to use the variable value somehow to make the compiler

happy.

Fails:

package main
var gvar int //not an error

func main() {
var one int //error, unused variable
two := 2 //error, unused variable
var three int //error, even though it's assigned 3 on the next line

three = 3

func(unused string) {
fmt.Println("Unused arg. No compile error")
}("what?")

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 5/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

/tmp/sandbox473116179/main.go:7: two declared and not used

/tmp/sandbox473116179/main.go:8: three declared and not used

Works:

package main
import "fmt"
func main() {

var one int

= one

two := 2
fmt.Println(two)

var three int
three = 3

one = three

var four int

four = four

Another option is to comment out or remove the unused variables :-)
Unused Imports

e level: beginner

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 6/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

If you really need the imported package you can use the blank identifier,
_ ,asits package name to avoid this compilation failure. The blank
identifier is used to import packages for their side effects.

Fails:

package main

import (
"fmt"
"log"
"time"
)

func main() {

b

Compile Errors:

/tmp/sandbox627475386/main.go:4: imported and not used: "fmt"
/tmp/sandbox627475386/main.go:5: imported and not used: "log"

/tmp/sandbox627475386/main.go:6: imported and not used: "time"

Works:

package main

import (
_ llf‘mtll
n 1ogll

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 7/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

func main() {

_ = time.Now

Another option is to remove or comment out the unused imports :-) The
goimports tool can help you with that.

Short Variable Declarations Can Be Used Only Inside Functions

e level: beginner

Fails:

package main
myvar := 1 //error

func main() {

}

Compile Error:

/tmp/sandbox265716165/main.go:3: non-declaration statement outside

function body

Works:

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 8/99

http://godoc.org/golang.org/x/tools/cmd/goimports

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

func main() {

}
Redeclaring Variables Using Short Variable Declarations

e level: beginner

You can't redeclare a variable in a standalone statement, but it is allowed in
multi-variable declarations where at least one new variable is also

declared.

The redeclared variable has to be in the same block or you'll end up with a
shadowed variable.

Fails:

package main

func main() {
one := 0

one := 1 //error

Compile Error:

/tmp/sandbox706333626/main.go:5: no new variables on left side of :=

Works:

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 9/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

one = U

one, two := 1,2

one,two = two,one

Can't Use Short Variable Declarations to Set Field Values

e level: beginner

Fails:

package main
import (

n .Fmt n

type info struct {

result int

func work() (int,error) {

return 13,nil

func main() {

var data info

data.result, err := work() //error

fmt.Printf("info: %+v\n",data)

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 10/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

Even though there's a ticket to address this gotcha it's unlikely to change
because Rob Pike likes it "as is" :-)

Use temporary variables or predeclare all your variables and use the
standard assignment operator.

Works:

package main

import (
n f’mt n

type info struct {

result int

func work() (int,error) {

return 13,nil

func main() {

var data info

var err error

data.result, err = work() //ok

if err !=nil {
fmt.Println(err)

return

3

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 11/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

Accidental Variable Shadowing

e level: beginner

The short variable declaration syntax is so convenient (especially for those
coming from a dynamic language) that it's easy to treat it like a regular
assignment operation. If you make this mistake in a new code block there
will be no compiler error, but your app will not do what you expect.

package main
import "fmt"

func main() {

X =1
fmt.Println(x) //prints 1
{

fmt.Println(x) //prints 1
X 1= 2
fmt.Println(x) //prints 2

}
fmt.Println(x) //prints 1 (bad if you need 2)

This is a very common trap even for experienced Go developers. It's easy to
make and it could be hard to spot.

You can use the vet command to find some of these problems. By
default, vet will not perform any shadowed variable checks. Make sure to
use the -shadow ﬂag: go tool vet -shadow your_file.go

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 12/99

http://godoc.org/golang.org/x/tools/cmd/vet

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

Can't Use "nil" to Initialize a Variable Without an Explicit Type

e level: beginner

The "nil" identifier can be used as the "zero value" for interfaces, functions,
pointers, maps, slices, and channels. If you don't specify the variable type
the compiler will fail to compile your code because it can't guess the type.

Fails:

package main

func main() {

var x = nil //error

Compile Error:
/tmp/sandbox188239583/main.go:4: use of untyped nil

Works:

package main

func main() {

var x interface{} = nil

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 13/99

https://github.com/barakmich/go-nyet

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

Using "nil” Slices and Maps

e level: beginner

It's OK to add items to a "nil" slice, but doing the same with a map will
produce a runtime panic.

Works:

package main

func main() {
var s [lint

s = append(s, 1)

Fails:

package main

func main() {
var m map[stringlint

mL"one"] = 1 //error

Map Capacity

e level: beginner

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 14/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

Fails:

package main
func main() {

m := make(map[string]int,99)

cap(m) //error

Compile Error:

/tmp/sandbox326543983/main.go:5: invalid argument m (type map[string]int)

for cap
Strings Can't Be "nil"

e level: beginner

This is a gotcha for developers who are used to assigning "nil" identifiers to
string variables.

Fails:

package main

func main() {

var x string = nil //error

if x == nil { //error
x = "default"

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 15/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

Compile Errors:

/tmp/sandbox630560459/main.go:4: cannot use nil as type string in
assignment /tmp/sandbox630560459/main.go:6: invalid operation: x == nil

(mismatched types string and nil)

Works:

package main

func main() {

var x string //defaults to "" (zero value)
i.F X —_ nn {

x = "default"
3

Array Function Arguments

e level: beginner

If you are a C or C++ developer arrays for you are pointers. When you pass
arrays to functions the functions reference the same memory location, so
they can update the original data. Arrays in Go are values, so when you pass
arrays to functions the functions get a copy of the original array data. This
can be a problem if you are trying to update the array data.

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 16/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

func main() {
x := [3]int{1,2,3}

func(arr [3]int) {
arr[0] = 7
fmt.Println(arr) //prints [7 2 3]

3

fmt.Println(x) //prints [1 2 3] (not ok if you need [7 2 31])

If you need to update the original array data use array pointer types.

package main
import "fmt"

func main() {
x := [3]int{1,2,3}

func(arr *[3]int) {
(*arr)[0] = 7
fmt.Println(arr) //prints &[7 2 3]

3 (8x)

fmt.Println(x) //prints [7 2 3]

Another option is to use slices. Even though your function gets a copy of
the slice variable it still references the original data.

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 17/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

func main() {
x := [1int{1,2,3}

func(arr [Jint) {
arr[0] = 7
fmt.Println(arr) //prints [7 2 3]

3

fmt.Println(x) //prints [7 2 3]

Unexpected Values in Slice and Array "range” Clauses

e level: beginner

This can happen if you are used to the "for-in" or "foreach" statements in
other languages. The "range"” clause in Go is different. It generates two
values: the first value is the item index while the second value is the item
data.

Bad:

package main
import "fmt"

func main() {

X = []String{"a" , "H" , "C"}

for v := range x {

fmt.Println(v) //prints 0, 1, 2

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 18/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

Good:

package main
import "fmt"

func main() {
X := []string{llall,llb"’IICII}

for _, v := range x {

fmt.Println(v) //prints a, b, c

Slices and Arrays Are One-Dimensional

e level: beginner

It may seem like Go supports multi-dimensional arrays and slices, but it
doesn't. Creating arrays of arrays or slices of slices is possible though. For
numerical computation apps that rely on dynamic multi-dimensional

arrays it's far from ideal in terms of performance and complexity.

You can build dynamic multi-dimensional arrays using raw one-
dimensional arrays, slices of "independent" slices, and slices of "shared
data” slices.

If you are using raw one-dimensional arrays you are responsible for
indexing, bounds checking, and memory reallocations when the arrays need

to grow.

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 19/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

each other. You can grow and shrink them without affecting other inner
slices.

package main

func main() {

table := make([][J]int,x)
for i:= range table {
table[i] = make([lint,y)

Creating a dynamic multi-dimensional array using slices of "shared data”
slices is a three step process. First, you have to create the data "container”
slice that will hold raw data. Then, you create the outer slice. Finally, you
initialize each inner slice by reslicing the raw data slice.

package main
import "fmt"

func main() {

h, w:=2, 4
raw := make([lint,h*w)

for 1 := range raw {

raw[i] = i

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 20/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

N ———

for i:= range table {

table[i] = raw[i*w:i*w + w]

fmt.Println(table,&table[1][0])
//prints: [[0 1 2 3] [45 6 7]] <ptr_addr_x>

There's a spec/proposal for multi-dimensional arrays and slices, but it
looks like it's a low priority feature at this point in time.

Accessing Non-Existing Map Keys
e level: beginner

This is a gotcha for developers who expect to get "nil" identifiers (like it's
done in other languages). The returned value will be "nil" if the "zero value"
for the corresponding data type is "nil", but it'll be different for other data
types. Checking for the appropriate "zero value" can be used to determine
if the map record exists, but it's not always reliable (e.g., what do you do if
you have a map of booleans where the "zero value" is false). The most
reliable way to know if a given map record exists is to check the second
value returned by the map access operation.

Bad:

package main

import "fmt"

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 21/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

if v = x["two"]; v == { //incorrect

fmt.Println("no entry")

Good:

package main

import "fmt"

func main() {

X := map[string]string{"one":"a","two":"", "three":"c"}

if _,ok := x["two"]; !ok {
fmt.Println("no entry")

Strings Are Inmutable

e level: beginner

Trying to update an individual character in a string variable using the index
operator will result in a failure. Strings are read-only byte slices (with a few
extra properties). If you do need to update a string then use a byte slice

instead converting it to a string type when necessary.

Fails:

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html

22/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

func main() {
x := "text"
x[0] = 'T'

fmt.Println(x)

Compile Error:

/tmp/sandbox305565531/main.go:7: cannot assign to x[0]

Works:

package main
import "fmt"

func main() {
X := "text"
xbytes := [Jbyte(x)
xbytes[0] = 'T'

fmt.Println(string(xbytes)) //prints Text

Note that this isn't really the right way to update characters in a text string
because a given character could be stored in multiple bytes. If you do need
to make updates to a text string convert it to a rune sclice first. Even with
rune slices a single character might span multiple runes, which can happen
if you have characters with grave accent, for example. This complicated and

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 23/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

Conversions Between Strings and Byte Slices

e level: beginner

When you convert a string to a byte slice (and vice versa) you get a
complete copy of the orginal data. It's not like a cast operation in other
languages and it's not like reslicing where the new slice variable points to
the same underlying array used by the original byte slice.

Go does have a couple of optimizations for [Joyte to string and
string to [lbyte conversions to avoid extra allocations (with more
optimizations on the todo list).

The first optimization avoids extra allocations when [Ibyte keys are used

to lookup entriesin map[string] collections: mlstring(key)] .

The second optimization avoids extra allocationsin for range clauses
where strings are converted to [Ibyte :

for i,v := range [Jbyte(str) {...} .
Strings and Index Operator

e level: beginner

The index operator on a string returns a byte value, not a character (like it's
done in other languages).

package main

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 24/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

fmt.Println(x[@]1) //print 116
fmt.Printf("%T",x[0]) //prints uint8

If you need to access specific string "characters" (unicode code
points/runes) use the for range clause. The official "unicode/utf8"
package and the experimental utf8string package
(golang.org/x/exp/utf8string) are also useful. The utf8string package
includes a convenient At() method. Converting the string to a slice of

runes is an option too.
Strings Are Not Always UTF8 Text

e level: beginner

String values are not required to be UTF8 text. They can contain arbitrary
bytes. The only time strings are UTF8 is when string literals are used. Even
then they can include other data using escape sequences.

To know if you have a UTF8 text string use the validstring() function
from the "unicode/utf8" package.

package main

import (
n fmt n
"unicode/utf8"
)

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 25/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

data2 := "A\xfeC"
fmt.Println(utf8.ValidString(data2)) //prints: false
3
String Length

e level: beginner

Let's say you are a python developer and you have the following piece of
code:

data = u'®’
print(len(data)) #prints: 1

When you convert it to a similar Go code snippet you might be surprised.

package main
import "fmt"
func main() {

data := "®"
fmt.Println(len(data)) //prints: 3

The built-in 1en() function returns the number of bytes instead of the
number of characters like it's done for unicode strings in Python.

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 26/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

package main

import (
n .Fmt n
"unicode/utf8"
)

func main() {
data := "®"

fmt.Println(utf8.RuneCountInString(data)) //prints: 1

Technically the RuneCountInstring() function doesn't return the number of

characters because a single character may span multiple runes.

package main

import (
n .Fmt n
"unicode/utf8"
)

func main() {
data := "e"
fmt.Println(len(data)) //prints: 3
fmt.Println(utf8.RuneCountInString(data)) //prints: 2

Missing Comma In Multi-Line Slice, Array, and Map Literals

e level: beginner

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 27/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

func main() {

x := [Jint{
1,
2 //error
}
= X

Compile Errors:

/tmp/sandbox367520156/main.go:6: syntax error: need trailing comma before
newline in composite literal /tmp/sandbox367520156/main.go:8: non-
declaration statement outside function body

/tmp/sandbox367520156/main.go:9: syntax error: unexpected }

Works:

package main

func main() {

x = [Jint{

1,

2,

}

X = X

y := [1int{3,4,} //no error

y =y

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 28/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

log.Fatal and log.Panic Do More Than Log

e level: beginner

Logging libraries often provide different log levels. Unlike those logging
libraries, the log package in Go does more than log if you callits Fatalx()
and Panicx() functions. When your app calls those functions Go will also

terminate your app :-)

package main
import "log"

func main() {
log.Fatalln("Fatal Level: log entry") //app exits here
log.Println("Normal Level: log entry")

Built-in Data Structure Operations Are Not Synchronized

e level: beginner

Even though Go has a number of features to support concurrency natively,
concurrency safe data collections are not one them :-) It's your
responsibility to ensure the data collection updates are atomic. Goroutines
and channels are the recommended way to implement those atomic
operations, but you can also leverage the "sync" package if it makes sense

for your application.

Iteration Values For Strings in "range" Clauses

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 29/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

index of the first byte for the current "character" (unicode code point/rune)
returned in the second value. It's not the index for the current "character"
like it's done in other languages. Note that an actual character might be
represented by multiple runes. Make sure to check out the "norm" package
(golang.org/x/text/unicode/norm) if you need to work with characters.

The for range clauses with string variables will try to interpret the data
as UTF8 text. For any byte sequences it doesn't understand it will return
0xfffd runes (aka unicode replacement characters) instead of the actual
data. If you have arbitrary (non-UTF8 text) data stored in your string
variables, make sure to convert them to byte slices to get all stored data as
is.

package main
import "fmt"

func main() {
data := "A\xfe\x02\xff\x04"
for _,v := range data {
fmt.Printf("%#x ",v)

}
//prints: 0x41 oxfffd 0x2 oxfffd 0x4 (not ok)

fmt.Println()
for _,v := range [Jbyte(data) {
fmt . Printf("%#x ",v)

}
//prints: 0x41 0xfe 0x2 Oxff 0x4 (good)

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 30/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

This is a gotcha if you expect the items to be in a certain order (e.g., ordered
by the key value). Each map iteration will produce different results. The Go
runtime tries to go an extra mile randomizing the iteration order, but it
doesn't always succeed so you may get several identical map iterations.
Don't be surprised to see 5 identical iterations in a row.

package main
import "fmt"
func main() {
m := map[stringlint{"one":1,"two":2,"three":3,"four":4}

for k,v := range m {
fmt.Println(k,v)

And if you use the Go Playground (https://play.golang.org/) you'll always
get the same results because it doesn't recompile the code unless you make
a change.

Fallthrough Behavior in "switch" Statements

e level: beginner
The "case" blocks in "switch" statements break by default. This is different

from other languages where the default behavior is to fall through to the
next "case" block.

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 31/99

https://play.golang.org/

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

func main() {
isSpace := func(ch byte) bool {
switch(ch) {
case ' ': //error
case '\t':
return true

3

return false

fmt.Println(isSpace('\t')) //prints true (ok)
fmt.Println(isSpace(' ')) //prints false (not ok)

You can force the "case" blocks to fall through by using the "fallthrough”
statement at the end of each "case" block. You can also rewrite your switch
statement to use expression lists in the "case" blocks.

package main
import "fmt"

func main() {
isSpace := func(ch byte) bool {
switch(ch) {
case ' ', "\t':
return true

3

return false

fmt.Println(isSpace('\t')) //prints true (ok)

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html

32/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

Increments and Decrements

o level: beginner

Many languages have increment and decrement operators. Unlike other
languages, Go doesn't support the prefix version of the operations. You also
can't use these two operators in expressions.

Fails:

package main

import "fmt"

func main() {
data := [Jint{1,2,3}
i:=20

++i //error

fmt.Println(datali++]) //error

Compile Errors:

/tmp/sandbox101231828/main.go:8: syntax error: unexpected ++

/tmp/sandbox101231828/main.go:9: syntax error: unexpected ++, expecting :

Works:

package main

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 33/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

i++

fmt.Println(datalil)

Bitwise NOT Operator

e level: beginner

Many languages use ~ asthe unary NOT operator (aka bitwise
complement), but Go reuses the XOR operator (*) for that.

Fails:

package main
import "fmt"

func main() {

fmt.Println(~2) //error

Compile Error:

/tmp/sandbox965529189/main.go:6: the bitwise complement operator is A

Works:

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 34/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

func main() {
var d uint8 = 2
fmt.Printf("%08b\n", *d)

Go stilluses * asthe XOR operator, which may be confusing for some
people.

If you want you can represent a unary NOT operation (e.g, NoT oxe2) with
a binary XOR operation (e.g., ox02 XorR oxff). This could explain why * is
reused to represent unary NOT operations.

Go also has a special 'AND NOT' bitwise operator (&*), which adds to the
NOT operator confusion. It looks like a special feature/hack to support
A AND (NOT B) without requiring parentheses.

package main
import "fmt"

func main() {

var a uint8 0x82
0x02
fmt.Printf("%08b [AJ\n",a)

fmt.Printf("%08b [BI\n",b)

var b uint8

fmt.Printf("%08b (NOT B)\n",b)
fmt.Printf("%08b » %08b = %@8b [B XOR OxffI\n",b,0xff,b ~ Oxff)

fmt.Printf("%08b * %08b = %08b [A XOR BJ]\n",a,b,a * b)

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 35/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

Operator Precedence Differences

e level: beginner

Aside from the "bit clear” operators (&) Go has a set of standard
operators shared by many other languages. The operator precedence is not
always the same though.

package main
import "fmt"

func main() {
fmt.Printf("0x2 & 0x2 + 0x4 -> %#x\n",0x2 & Ox2 + 0x4)
//prints: 0x2 & 0x2 + 0x4 -> 0x6
//Go: (0x2 & 0x2) + Ox4
//C++: 0x2 & (0x2 + 0x4) -> 0x2

fmt.Printf("Ox2 + 0x2 << Ox1 -> %#x\n",0x2 + 0x2 << 0x1)
//prints: 0x2 + 0x2 << 0x1 -> 0x6

//Go: 0x2 + (0x2 << 0x1)

//C++: (0x2 + 0x2) << Ox1 -> 0x8

fmt.Printf("0xf | 0x2 *» 0x2 -> %#x\n",0xf | Ox2 * 0x2)
//prints: Oxf | 0x2 * 0x2 -> Oxd

//Go: (oxf | @x2) * 0x2

//C++: oxf | (0x2 * 0x2) -> Oxf

Unexported Structure Fields Are Not Encoded

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 36/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

etc.) encoded, so when you decode the structure you'll end up with zero
values in those unexported fields.

package main

import (
n .Fmt n
"encoding/json"
)

type MyData struct {
One int

two string

func main() {
in := MyData{1,"two"}
fmt.Printf("%#v\n",in) //prints main.MyData{One:1, two:"two"}

encoded,_ := json.Marshal(in)
fmt.Println(string(encoded)) //prints {"One":1}

var out MyData

json.Unmarshal (encoded, &out)

fmt.Printf("%#v\n",out) //prints main.MyData{One:1, two:""}

App Exits With Active Goroutines

e level: beginner

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 37/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

package main

import (
"fmt"
"time"
)

func main() {

workerCount := 2

for i := 0; i < workerCount; i++ {
go doit(i)
}

time.Sleep(1 * time.Second)
fmt.Println("all done!")

func doit(workerId int) {
fmt.Printf("[%v] is running\n",workerId)
time.Sleep(3 * time.Second)
fmt.Printf("[%v] is done\n",workerId)

You'll see:

[0] is running
[1] is running
all done!

One of the most common solutions is to use a "WaitGroup" variable. It will
allow the main goroutine to wait until all worker goroutines are done. If

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 38/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

all workers are receiving from. It's a simple way to signal all goroutines at

once.

package main

import (
"fmt"
"sync"
)

func main() {

var wg sync.WaitGroup

done := make(chan struct{})

workerCount := 2

for i := 0; i < workerCount; i++ {
wg.Add(1)
go doit(i,done,wg)

}

close(done)

wg.Wait()

fmt.Println("all done!")

func doit(workerId int,done <-chan struct{},wg sync.WaitGroup) {
fmt.Printf("[%v] is running\n",workerId)
defer wg.Done()
<- done
fmt.Printf("[%v] is done\n",workerId)

If you run this app you'll see:

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 39/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

[1] is done

Looks like the workers are done before the main goroutine exists. Great!

However, you'll also see this:
fatal error: all goroutines are asleep - deadlock!

That's not so great :-) What's going on? Why is there a deadlock? The
workers exited and they executed wg.Done() . The app should work.

The deadlock happens because each worker gets a copy of the original

"WaitGroup" variable. When workers execute wg.pone() it has no effect on

the "WaitGroup" variable in the main goroutine.

package main

import (
"fmt"
"sync"
)

func main() {
var wg sync.WaitGroup
done := make(chan struct{})
wq := make(chan interface{})

workerCount := 2

for i := 0; i < workerCount; i++ {
wg.Add(1)
go doit(i,wq,done,&wg)

3

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html

40/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

close(done)
wg.Wait()
fmt.Println("all done!")

func doit(workerId int, wq <-chan interface{},done <-chan struct{},wg
*sync.WaitGroup) {
fmt.Printf("[%v] is running\n",workerId)
defer wg.Done()
for {
select {
case m := <- wqQ:
fmt.Printf("[%v] m => %v\n",workerId,m)
case <- done:
fmt.Printf("[%v] is done\n",workerId)

return

Now it works as expected :-)

Sending to an Unbuffered Channel Returns As Soon As the Target Receiver

Is Ready

e level: beginner

The sender will not be blocked until your message is processed by the

receiver. Depending on the machine where you are running the code, the

receiver goroutine may or may not have enough time to process the
message before the sender continues its execution.

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html

41/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

func main() {

ch := make(chan string)

go func() {
for m := range ch {

fmt.Println("processed:",m)

10

ch <- "cmd.1"

ch <- "cmd.2" //won't be processed

Sending to an Closed Channel Causes a Panic

e level: beginner

Receiving from a closed channel is safe. The ok returnvaluein areceive
statement will be set to false indicating that no data was received. If you
are receiving from a buffered channel you'll get the buffered data first and
once it's empty the ok returnvalue willbe false .

Sending data to a closed channel causes a panic. It is a documented
behavior, but it's not very intuitive for new Go developers who might expect
the send behavior to be similar to the receive behavior.

package main

import (
n fmt n

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 42/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

ch := make(chan int)
for i :=0; 1 < 3; i++ {
go func(idx int) {
ch <= (idx + 1) * 2
3(1)

//get the first result

fmt.Println(<-ch)

close(ch) //not ok (you still have other senders)
//do other work

time.Sleep(2 * time.Second)

Depending on your application the fix will be different. It might be a minor
code change or it might require a change in your application design. Either
way, you'll need to make sure your application doesn't try to send data to a
closed channel.

The buggy example can be fixed by using a special cancellation channel to
signal the remaining workers that their results are no longer neeeded.

package main

import (
"fmt"
"time"
)

func main() {
ch := make(chan int)

done := make(chan struct{})

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 43/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

case <- done: fmt.Println(idx,"exiting")
}
3(1)

//get first result
fmt.Println("result:",<-ch)
close(done)

//do other work
time.Sleep(3 * time.Second)

Using "nil" Channels

e level: beginner

Send and receive operationsona nil channel block forver. It's a well
documented behavior, but it can be a surprise for new Go developers.

package main

import (
"fmt"
"time"
)

func main() {
var ch chan int
for i :=0; 1 < 3; i++ {
go func(idx int) {
ch <= (idx + 1) % 2
3(1)

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 44/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

//do other work

time.Sleep(2 * time.Second)

If you run the code you'll see a runtime error like this:

fatal error: all goroutines are asleep - deadlock!

This behavior can be used as a way to dynamically enable and disable

case blocksina select statement.

package main

import "fmt"

import "time"

func main() {

inch := make(chan int)
outch := make(chan int)
go func() {

var in <- chan int = inch
var out chan <- int
var val int
for {
select {
case out <- val:
out = nil
in = inch
case val = <- in:
out = outch
in = nil

3

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html

45/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

- ~- ~

for r := range outch {

fmt.Println("result:",r)

10

time.Sleep(0)
inch <- 1
inch <- 2

time.Sleep(3 * time.Second)

Methods with Value Receivers Can't Change the Original Value

e level: beginner

Method receivers are like regular function arguments. If it's declared to be
a value then your function/method gets a copy of your receiver argument.
This means making changes to the receiver will not affect the original value
unless your receiver is a map or slice variable and you are updating the
items in the collection or the fields you are updating in the receiver are

pointers.

package main
import "fmt"

type data struct {
num int
key *string
items map[string]bool

3

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 46/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

func (this data) vmethod() {
this.num = 8
*this.key = "v.key"

this.items["vmethod"] = true

func main() {
key := "key.1"
d := data{1,8&key,make(map[string]bool)}

fmt.Printf("num=%v key=%v items=%v\n",d.num,*d.key,d.items)

//prints num=1 key=key.1 items=mapl[]

d.pmethod()
fmt . Printf("num=%v key=%v items=%v\n",d.num,*d.key,d.items)

//prints num=7 key=key.1 items=mapl[]
d.vmethod()

fmt.Printf("num=%v key=%v items=%v\n",d.num,*d.key,d.items)

//prints num=7 key=v.key items=map[vmethod:true]

Closing HTTP Response Body

e level: intermediate

When you make requests using the standard http library you get a http
response variable. If you don't read the response body you still need to
close it. Note that you must do it for empty responses too. It's very easy to
forget especially for new Go developers.

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 47/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

package main

import (
"fmt"
"net/http"
"io/ioutil”
)

func main() {
resp, err := http.Get("https://api.ipify.org?format=json")
defer resp.Body.Close()//not ok
if err !=nil {
fmt.Println(err)

return

body, err := ioutil.ReadAll(resp.Body)
if err 1= nil {
fmt.Println(err)

return

fmt.Println(string(body))

This code works for successful requests, but if the http request fails the

resp variable might be nil , which will cause a runtime panic.

The most common why to close the response body is by usinga defer call
after the http response error check.

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 48/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

“Tmt”
"net/http"

"io/ioutil"

func main() {
resp, err := http.Get("https://api.ipify.org?format=json")
if err 1= nil {
fmt.Println(err)

return

defer resp.Body.Close()//ok, most of the time :-)
body, err := ioutil.ReadAll(resp.Body)
if err !=nil {

fmt.Println(err)

return

fmt.Println(string(body))

Most of the time when your http request fails the resp variable will be

nil andthe err variable willbe non-nil . However, when you get a
redirection failure both variables will be non-nil . This means you can still
end up with a leak.

You can fix this leak by adding a call to close non-nil response bodies in
the http response error handling block. Another option is to use one
defer call to close response bodies for all failed and successful requests.

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html

49/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

“Tmt”
"net/http"

"io/ioutil"

func main() {
resp, err := http.Get("https://api.ipify.org?format=json")
if resp !=nil {

defer resp.Body.Close()

}

if err !=nil {
fmt.Println(err)
return

}

body, err := ioutil.ReadAll(resp.Body)
if err !=nil {
fmt.Println(err)

return

fmt.Println(string(body))

The orignal implementation for resp.Body.Close() also reads and discards
the remaining response body data. This ensured that the http connection
could be reused for another request if the keepalive http connection
behavior is enabled. The latest http client behavior is different. Now it's
your responsibility to read and discard the remaining response data. If you
don't do it the http connection might be closed instead of being reused.
This little gotcha is supposed to be documented in Go 1.5.

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 50/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

_, err = io.Copy(ioutil.Discard, resp.Body)

It will be necessary if you don't read the entire response body right away,
which might happen if you are processing json API responses with code like
this:

json.NewDecoder(resp.Body).Decode(&data)

Closing HTTP Connections

e level: intermediate

Some HTTP servers keep network connections open for a while (based on
the HTTP 1.1 spec and the server "keep-alive" configurations). By default,
the standard http library will close the network connections only when the
target HTTP server asks for it. This means your app may run out of
sockets/file descriptors under certain conditions.

You can ask the http library to close the connection after your request is
done by setting the close field in the request variable to true .

Another optionistoadd a Connection request header and setitto close .
The target HTTP server should respond with a Connection: close header
too. When the http library sees this response header it will also close the

connection.

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 51/99

2018/3/6

50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

“Tmt”
"net/http"

"io/ioutil"

func main() {

req, err := http.NewRequest("GET","http://golang.org",nil)

if err = nil {
fmt.Println(err)

return

req.Close = true
//or do this:

//req.Header.Add("Connection", "close")

resp, err := http.DefaultClient.Do(req)
if resp !=nil {

defer resp.Body.Close()

}

if err !=nil {
fmt.Println(err)
return

}

body, err := ioutil.ReadAll(resp.Body)
if err !=nil {
fmt.Println(err)

return

fmt.Println(len(string(body)))

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html

52/99

2018/3/6

50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

package main

import (

n .Fm.t n
"net/http"

"io/ioutil”

func main() {

tr := &http.Transport{DisableKeepAlives: true}

client := &http.Client{Transport: tr}

resp, err := client.Get("http://golang.org")

if resp !=nil {

defer resp.Body.Close()

}

if err 1= nil {
fmt.Println(err)
return

}

fmt.Println(resp.StatusCode)

body, err := ioutil.ReadAll(resp.Body)
if err !=nil {
fmt.Println(err)

return

fmt.Println(len(string(body)))

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html

53/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

close the network connections right after your app receives the responses.
Increasing the open file limit might be a good idea too. The correct solution
depends on your application though.

Unmarshalling JSON Numbers into Interface Values

e level: intermediate

By default, Go treats numeric values in JSON as float64 numbers when
you decode/unmarshal JSON data into an interface. This means the
following code will fail with a panic:

package main
import (

"encoding/json"

n f’mt n

func main() {
var data = [Jbyte({"status": 2003})

var result map[stringlinterface{}

if err := json.Unmarshal(data, &result); err != nil {
fmt.Println("error:", err)
return

}

var status = result["status"].(int) //error

fmt.Println("status value:",status)

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 54/99

2018/3/6

If the JSON value you are trying to decode is an integer you have serveral

options.

50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

Option one: use the float value as-is :-)

Option two: convert the float value to the integer type you need.

package main
import (

"encoding/j

n .Fmt n

func main() {

var data =

var result

son"

[Jbyte({"status": 200})

map[stringlinterface{}

if err := json.Unmarshal(data, &result); err != nil {
fmt.Println("error:", err)
return

}

var status

fmt.Println

= uint64(result["status"].(float64)) //ok

("status value:",status)

Option three: use a Decoder type to unmarshal JSON and tell it to

represent JSON numbers using the Number interface type.

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html

55/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

“encodaing/json-
n bytes"
n fmtll

func main() {

var data = [Jbyte({"status": 2003} ")

var result map[stringlinterface{}
var decoder = json.NewDecoder(bytes.NewReader(data))

decoder.UseNumber ()
if err := decoder.Decode(&result); err != nil {

fmt.Println("error:", err)

return

var status,_ = result["status"].(json.Number).Int64() //ok

fmt.Println("status value:",status)

You can use the string representation of your Number value to unmarshal
it to a different numeric type:

package main

import (
"encoding/json"
"bytes"
"fmt"

)

func main() {

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html

56/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

- ~ v

decoder.UseNumber ()

if err := decoder.Decode(&result); err != nil {
fmt.Println("error:", err)

return

var status uint64
if err := json.Unmarshal([Jbyte(result["status"].
(json.Number).String()), &status); err != nil {
fmt.Println("error:", err)

return

fmt.Println("status value:",status)

Option four: usea struct type that maps your numeric value to the
numeric type you need.

package main

import (
"encoding/json"
"bytes"
"fmt"

)

func main() {

var data = [Jbyte({"status": 2003} ")

var result struct {
Status uint64 "json:"status"®

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 57/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

fmt.Println("error:", err)

return

fmt.Printf("result => %+v", result)

//prints: result => {Status:200}

Option five: use a struct that maps your numeric value to the
json.RawMessage type if you need to defer the value decoding.

This option is useful if you have to perform conditional JSON field decoding
where the field type or structure might change.

package main

import (
"encoding/json"
"bytes"
"fmt"

func main() {
records := [J[lbyte{
[Ibyte({"status": 200, "tag":"one"}"),
[Joyte({"status":"ok", "tag":"two"}),

for idx, record := range records {
var result struct {
StatusCode uint64

StatusName string

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 58/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

if err := json.NewDecoder(bytes.NewReader(record)).Decode(&result);
err !=nil {
fmt.Println("error:", err)
return
}

var sstatus string
if err := json.Unmarshal(result.Status, &sstatus); err == nil {

result.StatusName = sstatus

var nstatus uint64
if err := json.Unmarshal(result.Status, &nstatus); err == nil {

result.StatusCode = nstatus

fmt.Printf("[%v] result => %+v\n",idx,result)

Comparing Structs, Arrays, Slices, and Maps

e level: intermediate

You can use the equality operator, ==, to compare struct variables if each
structure field can be compared with the equality operator.

package main
import "fmt"

type data struct {

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 59/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

-

char rune

yes bool

events <-chan string
handler interface{}
ref *byte

raw [10]byte

func main() {
vl := data{}
v2 := data{}

fmt.Println("vl == v2:",vl == v2) //prints: vi

If any of the struct fields are not comparable then using the equality
operator will result in compile time errors. Note that arrays are comparable

only if their data items are comparable.

package main

import "fmt"

type data struct {

num int

//0ok

checks [10]1func() bool //not

doit func() bool
m map[string] string

bytes [Jbyte

func main() {

vl := data{}

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html

//not
//not
//not

comparable
comparable
comparable

comparable

v2: true

60/99

2018/3/6

Go does provide a number of helper functions to compare variables that

50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

can't be compared using the comparison operators.

The most generic solution is to use the DeepEqual() function in the reflect

package.

package

import (
"fmt
"ref

)

type dat
num
chec
doit
m ma
byte

}

func mai
2
v2
fmt.

true
m1
m2 :
fmt.

m2: true

main

lect"

a struct {

int //0ok

ks [10]func() bool //not comparable
func() bool //not comparable

plstring] string //not comparable

s [Jbyte //not comparable

n() {

= data{}

= data{}

Println("vl == v2:" reflect.DeepEqual(vl,v2)) //prints: vi

map[string]string{"one": "a","two": "b"}

map[string]string{"two": "b", "one": "a"}

Println("ml == m2:",reflect.DeepEqual(ml, m2)) //prints: ml

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html

61/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

Aside from being slow (which may or may not be a deal breaker for your
application), DeepEqual() also has its own gotchas.

package main

import (
"fmt"
"reflect"
)

func main() {

var bl [Jbyte = nil

b2 := [Jbyte{}

fmt.Println("b1 == b2:",reflect.DeepEqual(bl, b2)) //prints: bl ==
b2: false

b

DeepEqual() doesn't consider an empty slice to be equal to a "nil" slice.
This behavior is different from the behavior you get using the

bytes.Equal() function. bytes.Equal() considers "nil" and empty slices to
be equal.

package main

import (
"fmt"
"bytes"
)

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 62/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

DeepEqual() isn't always perfect comparing slices.

package main

import (
"fmt"
"reflect"
"encoding/json"
)

func main() {
var str string = "one"

var in interface{} = "one"

fmt.Println("str == in:",str == in,reflect.DeepEqual(str, in))

//prints: str == in: true true

v
v2

[Istring{"one","two"}

[]interface{}{"oneu , " tWO“}

fmt.Println("v1l == v2:" reflect.DeepEqual(vl, v2))

//prints: v1 == v2: false (not ok)

data := map[stringlinterface{}{

"code": 200,

"value": [Istring{"one","two"},
}
encoded, _ := json.Marshal(data)

var decoded map[stringlinterface{}

json.Unmarshal(encoded, &decoded)

fmt.Println("data == decoded:",reflect.DeepEqual (data, decoded))

//prints: data == decoded: false (not ok)
}

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html

63/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

using ==, bytes.Equal() ,Or bytes.Compare()). It will work for English
text, but it will not work for text in many other languages.
strings.EqualFold() and bytes.EqualFold() should be used instead.

If your byte slices contain secrets (e.g., cryptographic hashes, tokens, etc.)
that need to be validated against user-provided data, don't use
reflect.DeepEqual() , bytes.Equal() ,Or bytes.Compare() because those
functions will make your application vulnerable to timing attacks. To avoid
leaking the timing information use the functions from the 'crypto/subtle’

package (e.g., subtle.ConstantTimeCompare())
Recovering From a Panic

¢ level: intermediate

The recover() function can be used to catch/intercept a panic. Calling
recover() Will do the trick only when it's done in a deferred function.

Incorrect:

package main
import "fmt"

func main() {
recover() //doesn't do anything
panic("not good")
recover() //won't be executed :)
fmt.Println("ok")

}

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 64/99

http://en.wikipedia.org/wiki/Timing_attack

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

package main
import "fmt"
func main() {

defer func() {

fmt.Println("recovered:",recover())

10O

panic("not good")

The callto recover() works only if it's called directly in your deferred
function.

Fails:

package main
import "fmt"
func doRecover() {

fmt.Println("recovered =>" recover()) //prints: recovered => <nil>

func main() {
defer func() {

doRecover() //panic is not recovered

10

panic("not good")

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html

65/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

- LLVULL 1Lt iricuiIacte

The data values generated in the "range" clause are copies of the actual
collection elements. They are not references to the original items. This
means that updating the values will not change the original data. It also

means that taking the address of the values will not give you pointers to
the original data.

package main
import "fmt"
func main() {
data := [Jlint{1,2,3}

for _,v := range data {

v *= 10 //original item is not changed

fmt.Println("data:",data) //prints data: [1 2 3]

If you need to update the original collection record value use the index
operator to access the data.

package main
import "fmt"
func main() {

data := [lint{1,2,3}

for i,_ := range data {

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html

66/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

If your collection holds pointer values then the rules are slightly different.
You still need to use the index operator if you want the original record to
point to another value, but you can update the data stored at the target
location using the second value in the "for range" clause.

package main
import "fmt"

func main() {
data := [J*struct{num int} {{13},{2},{3}}

for _,v := range data {

v.num *= 10

fmt.Println(datal@],datal1],datal2]) //prints &{10} &{20} &{30}

"Hidden" Data in Slices

e level: intermediate

When you reslice a slice, the new slice will reference the array of the
original slice. If you forget about this behavior it can lead to unexpected
memory usage if your application allocates large temporary slices creating
new slices from them to refer to small sections of the original data.

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 67/99

2018/3/6

50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

func get() [Jbyte {
raw := make([]byte,10000)
fmt.Println(len(raw),cap(raw),&raw[0]) //prints: 10000 10000
<byte_addr_x>

return rawl:3]

func main() {

data := get()

fmt.Println(len(data),cap(data),&datal[@]) //prints: 3 10000
<byte_addr_x>
}

To avoid this trap make sure to copy the data you need from the temporary

slice (instead of reslicing it).

package main

import "fmt"

func get() [lbyte {
raw := make([]byte,10000)
fmt.Println(len(raw),cap(raw),&raw[@]) //prints: 10000 10000
<byte_addr_x>
res := make([Jbyte,3)
copy(res,raw[:31)

return res

func main() {

data := get()

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 68/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

Slice Data "Corruption”

e level: intermediate
Let's say you need to rewrite a path (stored in a slice). You reslice the path

to reference each directory modifying the first folder name and then you
combine the names to create a new path.

package main

import (
"fmt"
"bytes"
)

func main() {
path := [Jbyte("AAAA/BBBBBBBBB")
sepIndex := bytes.IndexByte(path,'/")
dir1
dir2 := path[sepIndex+1:]
fmt.Println("dir1 =>",string(dir1)) //prints: dirl => AAAA
fmt.Println("dir2 =>" string(dir2)) //prints: dir2 => BBBBBBBBB

path[:sepIndex]

dir1
path

append(dir1, "suffix"...)
bytes.Join([J1[Ibyte{dir1,dir2},[Joyte{'/"'})

fmt.Println("dir1 =>" string(dir1)) //prints: dir1 => AAAAsuffix
fmt.Println("dir2 =>" string(dir2)) //prints: dir2 => uffixBBBB (not
ok)

fmt.Println("new path =>",string(path))

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 69/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

slice. This means that the original path is also modified. Depending on your
application this might be a problem too.

This problem can fixed by allocating new slices and copying the data you
need. Another option is to use the full slice expression.

package main

import (
"fmt"
"bytes"
)

func main() {
path := [Jbyte("AAAA/BBBBBBBBB")
sepIndex := bytes.IndexByte(path,'/")
dirl := path[:sepIndex:sepIndex] //full slice expression
dir2 := path[sepIndex+1:]
fmt.Println("dirl =>" string(dir1)) //prints: dirl => AAAA
fmt.Println("dir2 =>" string(dir2)) //prints: dir2 => BBBBBBBBB

dir1
path

append(dir1,"suffix"...)
bytes.Join([J1[Ibyte{dir1,dir2},[Joyte{'/"'})

fmt.Println("dir1 =>" string(dir1)) //prints: dir1 => AAAAsuffix
fmt.Println("dir2 =>",string(dir2)) //prints: dir2 => BBBBBBBBB (ok

now)

fmt.Println("new path =>" string(path))

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 70/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

"Stale" Slices

e level: intermediate

Multiple slices can reference the same data. This can happen when you
create a new slice from an existing slice, for example. If your application
relies on this behavior to function properly then you'll need to worry about
"stale" slices.

At some point adding data to one of the slices will result in a new array
allocation when the original array can't hold any more new data. Now other
slices will point to the old array (with old data).

import "fmt"
func main() {
s1 := [Jint{1,2,3}

fmt.Println(len(s1),cap(s1),s1) //prints 3 3 [1 2 3]

s2 := s1[1:1]
fmt.Println(len(s2),cap(s2),s2) //prints 2 2 [2 3]

for i := range s2 { s2[i] += 20 }
//still referencing the same array
fmt.Println(s1) //prints [1 22 23]

fmt.Println(s2) //prints [22 23]

s2 = append(s2,4)

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 71/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

fmt.Println(s2) //prints [32 33 14]

Type Declarations and Methods

e level: intermediate

When you create a type declaration by defining a new type from an existing
(non-interface) type, you don't inherit the methods defined for that
existing type.

Fails:

package main
import "sync"
type myMutex sync.Mutex
func main() {
var mtx myMutex

mtx.Lock() //error
mtx.Unlock() //error

Compile Errors:

/tmp/sandbox106401185/main.go:9: mtx.Lock undefined (type myMutex has no

field or method Lock) /tmp/sandbox106401185/main.go:10: mtx.Unlock

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 72/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

struct type embedding the original type as an anonymous field.

Works:

package main
import "sync"
type mylLocker struct {

sync.Mutex

func main() {
var lock myLocker
lock.Lock() //ok
lock.Unlock() //ok

Interface type declarations also retain their method sets.

Works:

package main
import "sync"
type mylLocker sync.locker
func main() {

var lock myLocker = new(sync.Mutex)
lock.Lock() //ok

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 73/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

Breaking Out of "for switch” and “for select” Code Blocks

e level: intermediate

A "break" statement without a label only gets you out of the inner
switch/select block. If using a "return” statement is not an option then
defining a label for the outer loop is the next best thing.

package main
import "fmt"

func main() {

loop:
for {
switch {
case true:
fmt.Println("breaking out...")
break loop
3
}

fmt.Println("out!")

A "goto" statement will do the trick too...
Iteration Variables and Closures in "for" Statements

e level: intermediate

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html

74/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

(and they'll get that variable's value at the time those goroutines start
executing).

Incorrect:

package main

import (
"fmt"
"time"
)

func main() {

data := []string{"one","two","three"}

for _,v := range data {

go func() {
fmt.Println(v)

3O

time.Sleep(3 * time.Second)

//goroutines print: three, three, three

The easiest solution (that doesn't require any changes to the goroutine) is
to save the current iteration variable value in a local variable inside the
for loop block.

Works:

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 75/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

“Tmte

"time"

func main() {

data := [JIstring{"one","two","three"}

for _,v := range data {
vecopy := v //

go func() {
fmt.Println(vcopy)

1O)

time.Sleep(3 * time.Second)

//goroutines print: one, two, three

Another solution is to pass the current iteration variable as a parameter to
the anonymous goroutine.

Works:

package main

import (
"fmt"
"time"
)

func main() {

data := [Jstring{"one","two","three"}

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 76/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

time.Sleep(3 * time.Second)

//goroutines print: one, two, three

Here's a slightly more complicated version of the trap.

Incorrect:

package main

import (
"fmt"
"time"
)

type field struct {

name string

func (p *field) print() {
fmt.Println(p.name)

func main() {

data := [1field{{"one"},{"two"},{"three"}}

for _,v := range data {

go v.print()

time.Sleep(3 * time.Second)

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html

77/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

Works:

package main

import (
"fmt"
"time"
)

type field struct {

name string

func (p *field) print() {
fmt.Println(p.name)

func main() {
data := [Ifield{{"one"},{"two"},{"three"}}

for _,v := range data {

vV =V

go v.print()

time.Sleep(3 * time.Second)

//goroutines print: one, two, three

What do you think you'll see when you run this code (and why)?

package main

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 78/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

type field struct {

name string

func (p *field) print() {
fmt.Println(p.name)

func main() {
data := []*field{{"one"},{"two"},{"three"}}
for _,v := range data {

go v.print()

time.Sleep(3 * time.Second)

Deferred Function Call Argument Evaluation

e level: intermediate

Arguments for a deferred function call are evaluated when the defer
statement is evaluated (not when the function is actually executing).

package main
import "fmt"

func main() {

var i int =1

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html

79/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

Deferred Function Call Execution

e level: intermediate

The deferred calls are executed at the end of the containing function and
not at the end of the containing code block. It's an easy mistake to make
for new Go developers confusing the deferred code execution rules with the
variable scoping rules. It can become a problem if you have a long running
function witha for loop that triesto defer resource cleanup callsin
each iteration.

package main

import (
"fmt"
"ogh
"path/filepath"
)

func main() {
if len(os.Args) !'= 2 {
os.Exit(-1)

start, err := os.Stat(os.Args[1])
if err !'=nil || !start.IsDir(){
os.Exit(-1)

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 80/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

return err

if !fi.Mode().IsRegular() {

return nil

targets = append(targets,fpath)
return nil

1)

for _,target := range targets {
f, err := os.Open(target)
if err !=nil {
fmt.Println("bad target:",target,"error:",err) //prints

error: too many open files

break
}
defer f.Close() //will not be closed at the end of this code
block
//do something with the file...
}
3

One way to solve the problem is by wrapping the code block in a function.

package main

import (
"fmt"
"os"
"path/filepath"
)

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 81/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

start, err := os.Stat(os.Args[1])
if err !=nil || !start.IsDir(){
os.Exit(-1)

var targets [J]string
filepath.Walk(os.Args[1], func(fpath string, fi os.FilelInfo, err
error) error {
if err !=nil {

return err

if !fi.Mode().IsRegular() {

return nil

targets = append(targets,fpath)

return nil

1)
for _,target := range targets {
func() {
f, err := os.0Open(target)
if err !=nil {
fmt.Println("bad target:",target,"error:",err)
return
}
defer f.Close() //ok
//do something with the file...
10
}

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 82/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

e level: intermediate

Failed type assertions return the "zero value" for the target type used in
the assertion statement. This can lead to unexpected behavior when it's

mixed with variable shadowing.

Incorrect:

package main
import "fmt"

func main() {

var data interface{} = "great"

if data, ok := data.(int); ok {
fmt.Println("[is an int] value =>", data)

} else {

fmt.Println("[not an int] value =>",6data)

//prints: [not an int] value => @ (not "great")

Works:

package main
import "fmt"

func main() {

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html

83/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

} else {
fmt.Println("[not an int] value =>",data)

//prints: [not an int] value => great (as expected)

Blocked Goroutines and Resource Leaks

e level: intermediate

Rob Pike talked about a number of fundamental concurrency patterns in
his "Go Concurrency Patterns” presentation at Google 1/0 in 2012. Fetching
the first result from a number of targets is one of them.

func First(query string, replicas ...Search) Result {
c := make(chan Result)
searchReplica := func(i int) { c <- replicas[i](query) }
for 1 := range replicas {

go searchReplica(i)

3

return <-c

The function starts a goroutines for each search replica. Each goroutine
sends its search result to the result channel. The first value from the result
channel is returned.

What about the results from the other goroutines? What about the
goroutines themselves?

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html

84/99

https://talks.golang.org/2012/concurrency.slide#1

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

will leak resources.

To avoid the leaks you need to make sure all goroutines exit. One potential
solution is to use a buffered result channel big enough to hold all results.

func First(query string, replicas ...Search) Result {
c := make(chan Result,len(replicas))
searchReplica := func(i int) { ¢ <- replicas[i](query) }
for i := range replicas {
go searchReplica(i)

3

return <-c

Another potential solutionis to usea select statementwitha default
case and a buffered result channel that can hold one value. The default
case ensures that the goroutines don't get stuck even when the result

channel can't receive messages.

func First(query string, replicas ...Search) Result {
c := make(chan Result,1)
searchReplica := func(i int) {
select {

case ¢ <- replicas[il(query):

default:
3

}

for i := range replicas {
go searchReplica(i)

}

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 85/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

You can also use a special cancellation channel to interrupt the workers.

func First(query string, replicas ...Search) Result {
c := make(chan Result)
done := make(chan struct{})
defer close(done)
searchReplica := func(i int) {
select {
case ¢ <- replicas[i](query):

case <- done:

3

}

for i := range replicas {
go searchReplica(i)

}

return <-c

Why did the presentation contain these bugs? Rob Pike simply didn't want
to comlicate the slides. It makes sense, but it can be a problem for new Go
developers who would use the code as is without thinking that it might

have problems.
Using Pointer Receiver Methods On Value Instances

e level: advanced

It's OK to call a pointer receiver method on a value as long as the value is
addressable. In other words, you don't need to have a value receiver version
of the method in some cases.

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html

86/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

package main
import "fmt"
type data struct {

name string

func (p *data) print() {

fmt.Println("name:",p.name)

type printer interface {

print()

func main() {
d1 := data{"one"}
dl.print() //ok

var in printer = data{"two"} //error

in.print()

m := map[string]data {"x":data{"three"}}
mL"x"].print() //error

Compile Errors:

/tmp/sandbox017696142/main.go:21: cannot use data literal (type data) as

type printer in assignment: data does not implement printer (print method

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 87/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

Updating Map Value Fields

e level: advanced

If you have a map of struct values you can't update individual struct fields.

Fails:

package main

type data struct {

name string

func main() {
m := map[stringldata {"x":{"one"}}

mL"x"].name = "two" //error

Compile Error:

/tmp/sandbox380452744/main.go:9: cannot assign to m["x"].name

It doesn't work because map elements are not addressable.

What can be extra confusing for new Go devs is the fact that slice elements
are addressable.

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 88/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

type data struct {

name string

func main() {
s := [Jdata {{"one"}}
s[0].name = "two" //ok

fmt.Println(s) //prints: [{two}]

Note that a while ago it was possible to update map element fields in one
of the Go compilers (gccgo), but that behavior was quickly fixed :-) It was
also considered as a potential feature for Go 1.3. It wasn't important
enough to support at that point in time, so it's still on the todo list.

The first work around is to use a temporary variable.

package main
import "fmt"
type data struct {

name string

func main() {

m := map[stringldata {"x":{"one"}}
ro:=m["x"]
r.name = "two"

m[llxll:l =r

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 89/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

Another workaround is to use a map of pointers.

package main
import "fmt"
type data struct {

name string

func main() {
m := map[string]xdata {"x":{"one"}}
m["x"J].name = "two" //ok

fmt.Println(m["x"]) //prints: &{two}

By the way, what happens when you run this code?

package main
type data struct {

name string

func main() {
m := map[string]xdata {"x":{"one"}}

m["z"].name = "what?" //?7?7?

"nil" Interfaces and "nil" Interfaces Values

e level: advanced

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html

90/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

The interface type and value fields are populated based on the type and

value of the variable used to create the corresponding interface variable.

This can lead to unexpected behavior when you are trying to check if an
interface variable equals to "nil".

package main
import "fmt"
func main() {

var data *byte

var in interface{}

fmt.Println(data,data == nil) //prints: <nil> true

fmt.Println(in,in == nil) //prints: <nil> true
in = data
fmt.Println(in,in == nil) //prints: <nil> false

//'data' is 'nil', but 'in' is not 'nil'

Watch out for this trap when you have a function that returns interfaces.

Incorrect:

package main

import "fmt"

func main() {

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html

91/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

- - -

result = &struct{}{}

return result

if res := doit(-1); res != nil {
fmt.Println("good result:",res) //prints: good result: <nil>

//'res' is not 'nil', but its value is 'nil'

Works:

package main

import "fmt"

func main() {
doit := func(arg int) interface{} {

var result xstruct{} = nil

if(arg > 0) {
result = &struct{}{}
} else {

return nil //return an explicit 'nil'

return result

if res := doit(-1); res != nil {

fmt.Println("good result:",res)

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 92/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

Stack and Heap Variables

e level: advanced

You don't always know if your variable is allocated on the stack or heap. In
C++ creating variables using the new operator always means that you
have a heap variable. In Go the compiler decides where the variable will be
allocated even if the new() or make() functions are used. The compiler
picks the location to store the variable based on its size and the result of
"escape analysis". This also means that it's ok to return references to local
variables, which is not ok in other languages like C or C++.

If you need to know where your variables are allocated pass the "-m" gc

flag to "go build" or "go run" (e.g., go run -gcflags -m app.go).
GOMAXPROCS, Concurrency, and Parallelism

e level: advanced

Go 1.4 and below uses only one execution context / OS thread. This means
that only one goroutine can execute at any given time. Starting with 1.5 Go
sets the number of execution contexts to the number of logical CPU cores
returned by runtime.NumCPU() . That number may or may not match the
total number of logical CPU cores on your system depending on the CPU
affinity settings of your process. You can adjust this number by changing
the GOMAXPROCS environment variable or by calling the
runtime.GOMAXPROCS() function.

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 93/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

description (https:/golang.org/pkg/runtime/) does a better job talking
about OS threads.

You can set GoMAXPROCS to more than the number of your CPUs. The max

value for GOMAXPROCS is 256.

package main

import (
"fmt"
"runtime"
)

func main() {
fmt.Println(runtime.GOMAXPROCS(-1)) //prints: X (1 on

play.golang.org)
fmt.Println(runtime.NumCPU()) //prints: X (1 on

play.golang.org)
runtime.GOMAXPROCS(20)
fmt.Println(runtime.GOMAXPROCS(-1)) //prints: 20
runtime.GOMAXPROCS(300)
fmt.Println(runtime.GOMAXPROCS(-1)) //prints: 256

Read and Write Operation Reordering

e level: advanced

Go may reorder some operations, but it ensures that the overall behavior in
the goroutine where it happens doesn't change. However, it doesn't
guarantee the order of execution across multiple goroutines.

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 94/99

https://golang.org/pkg/runtime/

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

“runtime”
"time"
)
var _ = runtime.GOMAXPROCS(3)

var a, b int

func u1() {
a =1
b =2

}

func u2() {
a=3
b =4

}

func p() {
println(a)
println(b)

}

func main() {

go ul()
go u2()

go pO)
time.Sleep(1 * time.Second)

If you run this code a few times you might see these a and b variable
combinations:

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 95/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

The most interesting combination for a and b is"02" It shows that b
was updated before a .

If you need to preserve the order of read and write operations across
multiple goroutines you'll need to use channels or the appropriate
constructs from the "sync" package.

Preemptive Scheduling

e |evel: advanced

It's possible to have a rogue goroutine that prevents other goroutines from
running. It can happen if you havea for loop that doesn't allow the
scheduler to run.

package main
import "fmt"

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 96/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

- ~o o~

done = true

10O

for !done {

}
fmt.Println("done!")

The for loop doesn't have to be empty. It'lL be a problem as long as it
contains code that doesn't trigger the scheduler execution.

The scheduler will run after GC, "go" statements, blocking channel
operations, blocking system calls, and lock operations. It may also run

when a non-inlined function is called.
package main

import "fmt"

func main() {

done := false

go func(){
done = true

10O

for !done {
fmt.Println("not done!") //not inlined

3
fmt.Println("done!")

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 97/99

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

Another option is to invoke the scheduler explicitly. You can do it with the

Gosched() function from the "runtime" package.

package main

import (
"fmt"
"runtime"
)

func main() {

done := false

go func(){

done = true

3O

for !done {
runtime.Gosched()

}
fmt.Println("done!")

If you made it here and you have comments or ideas feel free to add a note
to this Reddit discussion.

Thank you for your feedback and suggestions!

golang @ ¥ N

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 98/99

http://devs.cloudimmunity.com/tag/golang/index.html
http://www.reddit.com/submit
javascript:window.location=%22http://news.ycombinator.com/submitlink?u=%22+encodeURIComponent(document.location)+%22&t=%22+encodeURIComponent(document.title)
https://twitter.com/share?text=50%20Shades%20of%20Go:%20Traps,%20Gotchas,%20and%20Common%20Mistakes%20for%20New%20Golang%20Devs&url=http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/
http://devs.cloudimmunity.com/rss/index.html
https://www.reddit.com/r/golang/comments/360vlb/draft_traps_gotchas_and_common_mistakes_in_go/

2018/3/6 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs

Code, Cloud, Security, and Everything in Between.

Create secure cloud apps with Cloud Immunity.

http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/index.html 99/99

http://devs.cloudimmunity.com/author/kyle/index.html
https://twitter.com/kcqon
https://www.linkedin.com/in/kylequest
https://www.cloudimmunity.com/

